Respuesta :

Answer:

[tex]x(x+y)^2[/tex]

Step-by-step explanation:

We are given that

[tex]x^3y+2x^2y^2+xy^3[/tex] and [tex]2x^3+4x^2y+2xy^2[/tex]

We have to find HCF.

[tex]x^3y+2x^2y^2+xy^3=xy(x^2+2xy+y^2)[/tex]

=[tex]xy(x+y)^2[/tex]

By using the formula

[tex](x+y)^2=x^2+2xy+y^2[/tex]

[tex]xy(x+y)^2=x\times y\times (x+y)^2[/tex]

[tex]2x^3+4x^2y+2xy^2=2x(x^2+2xy+y^2)[/tex]

[tex]=2x(x+y)^2[/tex]

[tex]2x(x+y)^2=2\times x\times (x+y)^2[/tex]

HCF of ([tex]x^3y+2x^2y^2+xy^3,2x^3+4x^2y+2xy^2[/tex])

[tex]=x(x+y)^2[/tex]