Respuesta :
Answer:
[tex]\huge\boxed{A=6x^2-11x+3;\ \text{for}\ x>1.5}[/tex]
Step-by-step explanation:
The formula of an area of a rectangle:
[tex]A=a\cdot b\\\\a,\ b-\text{sides of a rectangle}[/tex]
We have:
[tex]a=2x-3\\b=3x-1[/tex]
The domain:
[tex]2x-3>0\ \wedge\ 3x-1>0\\\\2x-3+3>0+3\ \wedge\ 3x-1+1>0+1\\\\2x>3\ \wedge\ 3x>1\\\\\dfrac{2x}{2}>\dfrac{3}{2}\ \wedge\ \dfrac{3x}{3}>\dfrac{1}{3}\\\\x>1.5\ \wedge\ x>\dfrac{1}{3}\Rightarrow\boxed{x>1.5}[/tex]
Substitute:
[tex]A=(2x-3)(3x-1)[/tex]
use FOIL: (a + b)(c + d) = ac + ad + bc + bd
[tex]A= (2x)(3x)+(2x)(-1)+(-3)(3x)+(-3)(-1)\\\\A=6x^2-2x-9x+3[/tex]
combine like terms
[tex]A= 6x^2+(-2x-9x)+3\\\\A=6x^2-11x+3[/tex]
Answer:
6x² - 11x + 3
Step-by-step explanation:
To find the area of a rectangle, we multiply the length by the width.
A = l • w
length: 2x-3
width: 3x-1
A = (2x-3) • (3x-1)
To multiply these two binomials, we must FOIL (first | outer | inner | last) them.
F: 2x • 3x = 6x²
O: 2x • -1 = -2x
I: -3 • 3x = -9x
L: -3 • -1 = 3
Combine the terms.
6x² - 2x - 9x + 3
Combine like terms.
6x² - 11x + 3
This is your area.
Hope this helps!