The graph of f(x) = 3x2 – 5x – 22 passes through the point (0, –22) and one of its zeros is (–2, 0). What is the other zero of the function?

Respuesta :

Step-by-step explanation:

this is your answer....

Ver imagen honeysaha769

The other zero of the given function is [tex](\frac{11}{3}, 0)[/tex] .

How to find the x-intercept of a quadratic function ?

Let us assume f(x) [tex]=ax^{2} +bx+c[/tex], then to find the x-intercepts of this quadratic equation, let y = 0, i.e. [tex]ax^{2} +bx+c=0[/tex]

How to find zeros of the given function ?

Given, f(x)= [tex]3x^{2} -5x-22[/tex], whose one zero is (-2,0)

Now, to find the x-intercepts of the given quadratic equation, we have to take y = 0.

∴ [tex]3x^{2} -5x-22=0[/tex]

Now we have to solve this equation to find it's another zero.

[tex]3x^{2} -5x-22=0[/tex]

⇒ [tex]3x^{2} -(11-6)x-22=0[/tex]

⇒ [tex]3x^{2} -11x+6x-22=0[/tex]

⇒ [tex]x(3x-11)+2(3x-11)=0[/tex]

⇒ [tex](3x-11)(x+2)=0[/tex]

We know that, if multiplication of two terms is zero, then each of this term is seperately zero.

∴ [tex]3x-11=0[/tex]   or [tex]x+2=0[/tex]

⇒ [tex]3x=11[/tex]    or [tex]x=-2[/tex]

⇒ [tex]x=\frac{11}{3}[/tex]  or [tex]x=-2[/tex]

So, another zero of the function is [tex](\frac{11}{3}, 0)[/tex].

Learn more about zeros of a quadratic equation here :

https://brainly.com/question/1498156

#SPJ2