Answer:
[tex]R(x) = (1.3)^{3x-8}[/tex]
Step-by-step explanation:
Given
[tex]A(x) = (1.3)^{x + 9}[/tex]
[tex]B(x) = (1.3)^{4x + 1}[/tex]
Required
Ratio B(x) to A(x)
This is calculated as:
[tex]R(x) = B(x) : A(x)[/tex]
Express as fraction
[tex]R(x) = \frac{B(x) }{A(x)}[/tex]
Substitute: [tex]A(x) = (1.3)^{x + 9}[/tex] and [tex]B(x) = (1.3)^{4x + 1}[/tex]
[tex]R(x) = \frac{(1.3)^{4x+1}}{(1.3)^{x+9}}[/tex]
Apply law of indices
[tex]R(x) = (1.3)^{4x-x+1-9}[/tex]
[tex]R(x) = (1.3)^{3x-8}[/tex]