A line passes through (-2, 7) and (3, 2).
Find the slope-intercept form of the equation of the line.
Then fill in the value of the slope, m , and the value of the y-intercept, b, below.

m=
b=

Respuesta :

Answer:

m = - 1

b = 5

Step-by-step explanation:

[tex]slope, m= \frac{2-7}{3--2}= \frac{-5}{5}= -1\\\\equation : (y-y_1)= m(x-x_1)[/tex]

             [tex](y-7) = -1(x--2)\\y-7 = -1(x+2)\\y = -1x-2+7\\y= -1x+5[/tex]

[tex]\huge{ \mathfrak{  \underline{ Answer \:  \:  ✓ }}}[/tex]

Slope of the line :

[tex] \large\boxed{ \mathrm{ \frac{y_2 - y_1 }{x_2 - x_1} }}[/tex]

  • [tex] \dfrac{7 - 2}{ - 2 - 3} [/tex]

  • [tex] \dfrac{ 5}{ - 5} [/tex]

  • [tex] - 1[/tex]

therefore, m = slope = -1

The equation of the line will be :

  • y = mx + b

  • y = (-1 × x) + b

  • y = -x + b

Now, let's plug the value of x and y from coordinates of second point,

  • [tex]y = - x + b[/tex]

  • [tex]2 = - 3 + b[/tex]

  • [tex]b = 5[/tex]

Hence, the required values are :

  • [tex] \boxed{m = - 1}[/tex]

  • [tex] \boxed{ \: \: \: b = 5 \: \: \: }[/tex]

_____________________________

[tex]\mathrm{ ☠ \: TeeNForeveR \:☠ }[/tex]