Respuesta :

Given:

ST || RU

To find:

The measure of QS.

Solution:

In triangle QRU and QST,

[tex]\angle RQU\cong \angle SQT[/tex]              [Common angle]

[tex]\angle QRU\cong \angle QST[/tex]              [Corresponding angle]

[tex]\triangle RQU\sim \triangle SQT[/tex]              [AA property of similarity]

The corresponding sides of similar triangles are proportional.

[tex]\dfrac{QR}{QS}=\dfrac{QU}{QT}[/tex]

[tex]\dfrac{23}{QS}=\dfrac{25}{25+50}[/tex]

[tex]\dfrac{23}{QS}=\dfrac{25}{75}[/tex]

[tex]\dfrac{23}{QS}=\dfrac{1}{3}[/tex]

On cross multiplication, we get

[tex]3(23)=1(QS)[/tex]

[tex]69=QS[/tex]

Therefore, the measure of QS is 69.