An object whose weight is 100 lbf experiences a decrease in kinetic energy of 500 ft-lbf and an increase in potential energy of 1500 ft-lbf. The initial velocity and elevation of the object, each relative to the surface of the earth, are 40 ft/s and 30 ft, respectively.

Required:
a. Find final velocity in ft/s.
b. Find final elevation.

Respuesta :

Answer:

a) the final velocity is 35.75 ft/s

b) The final elevation is 45 ft

Explanation:

Given the data in the question;

Weight of object; W = 100 lbf

Change in kinetic energy; ΔE = 500 ft-lb

so

[tex]\frac{1}{2}[/tex]m[tex]v_i^2[/tex] - [tex]\frac{1}{2}[/tex]m[tex]v_f^2[/tex] = ΔE

[tex]\frac{1}{2}[/tex]m[tex]v_i^2[/tex] - [tex]\frac{1}{2}[/tex]m[tex]v_f^2[/tex] = 500

multiply both sides by 2

m[tex]v_i^2[/tex] - m[tex]v_f^2[/tex] = 1000

m( [tex]v_i^2[/tex] - [tex]v_f^2[/tex] ) = 1000

[tex]v_i^2[/tex] - [tex]v_f^2[/tex] = 1000/m

[tex]v_i^2[/tex] - [tex]v_f^2[/tex] = (1000)(g) / W

we know that, acceleration due to gravity g = 9.8 m/s² = 32.18 ft/s²

so we substitute

[tex]v_i^2[/tex] - [tex]v_f^2[/tex] = (1000)(32.18) / 100

[tex]v_i^2[/tex] - [tex]v_f^2[/tex] = (1000)(32.18) / 100

[tex]v_i^2[/tex] - [tex]v_f^2[/tex] = 32180 / 100

[tex]v_i^2[/tex] - [tex]v_f^2[/tex] = 321.8

since The initial velocity [tex]v_i[/tex] is given to be 40 ft/s;

(40)² - [tex]v_f^2[/tex] = 321.8

1600 - [tex]v_f^2[/tex] = 321.8

[tex]v_f^2[/tex] = 1600 - 321.8

[tex]v_f^2[/tex] = 1278.2

[tex]v_f[/tex] = √1278.2

[tex]v_f[/tex] = 35.75 ft/s

Therefore, the final velocity is 35.75 ft/s

b)

we know that;

change in potential energy is;

ΔP.E = mg( h[tex]_f[/tex] - h[tex]_i[/tex] )

given that; increase in potential energy; ΔP.E = 1500 ft-lbf

and mg = Weight = 100 lbf

we substitute

1500  = 100( h[tex]_f[/tex] - h[tex]_i[/tex] )

h[tex]_f[/tex] - h[tex]_i[/tex] = 1500 / 100

h[tex]_f[/tex] - h[tex]_i[/tex] = 15 ft

given that, elevation of the object; h[tex]_i[/tex] = 30 ft

h[tex]_f[/tex] - 30 ft = 15 ft

h[tex]_f[/tex] = 15 ft + 30 ft

h[tex]_f[/tex] = 45 ft

Therefore, The final elevation is 45 ft