Determine the small gravitational force F which the copper sphere exerts on the steel sphere. Both spheres are homogeneous, and the value of r is 50 mm. Express your result as a vector.

Respuesta :

Solution :

We know that the volume of sphere is given by :

[tex]$V=\frac{4}{3}\pi r ^3$[/tex]

Given r = 50 mm

The density of copper is :

[tex]$\rho_c = 8910 \ kg/m^3$[/tex]

The density of steel is :

[tex]$\rho_s = 7830\ kg/m^3$[/tex]

Therefore, mass of copper is :

[tex]$m_c= V . \rho$[/tex]

[tex]$m_c= \frac{4}{3} \pi (0.05)^3 \times 8910$[/tex]

     = 4.665 kg

     = 4665 g

Similarly, mass of steel is :

[tex]$m_s= V . \rho$[/tex]

[tex]$m_s= \frac{4}{3} \pi (0.025)^3 \times 7830$[/tex]

     = 0.512 kg

     = 512 g

Now the distance between the centers of the particles is by Pythagoras theorem,

[tex]$l^2=(4r)^2+(2r)^2$[/tex]

l = 4.472 x r

 = 4.472 x 50

 = 224 mm

 = 0.224 m

From the law of gravitation,

We know,  [tex]G = 6673 \times 10^{-11} \ m^3 / kg-s^2[/tex]

∴  [tex]$F=G\times \frac{m_c \times m_s}{l^2}$[/tex]

[tex]$F=6.673 \times 10^{-11}\times \frac{4.665 \times 0.512}{(0.224)^2}$[/tex]

[tex]$F = 3.176 \times 10^{-9} \ N$[/tex]

Now,

[tex]$\alpha = \tan^{-1} \left( \frac{2r}{4r}\right)$[/tex]

   =  [tex]$26.56^\circ$[/tex]

Therefore, we can write it in the vector form as

[tex]$\text{F}=F(-i . \cos \alpha - j. \sin \alpha)$[/tex]

[tex]$\text{F}=3.176 \times 10^{-9}(-i . \cos 26.56 - j. \sin 26.56)$[/tex]

[tex]$\text{F}=(-2.840\ i- 1.420 \ j) \times 10^{-9} \ N$[/tex]

Ver imagen AbsorbingMan