Respuesta :
Answer:
Thus, from the calculations below;
The safety stock = 55
The reorder point = 695
quantity required to be ordered in order to reduce and minimize total annual cost for the restaurant = 3394 buns
The order cycles length = 34 days
Explanation:
From the given information:
The average demand (d) = 160
The standard deviatiion [tex]\sigma_d[/tex] = 10
Lead time = 4 days
Service level = 99.7% = 0.997
From the Standard Normal Curve; the z value at 99.7% = 2.75
The annual demand (D) = 36000
Ordering cost = $1
Unit purchased Cost = $0.025
The holding cost for the annual inventory = 25% of 0.025 = 0.00625
The reorder point can be determined by using the formula:
[tex]= \bar d \times Lead \ time +z\times \sigma_d \times \sqrt{LT}[/tex]
[tex]\mathbf{ = 160\ \times4+2.75 \times10 \times\sqrt{4}}[/tex]
= 695
The safety stock SS = [tex]z \times \sigma_d \times \sqrt{LT}[/tex]
[tex]= 2.75 \times 10 \times \sqrt{4}[/tex]
= 55
The economic order quality = [tex]\sqrt{2 \times D \times \dfrac{ordering \ cost }{annua l\ holding \ cost}}[/tex]
[tex]= \sqrt{2 \times 36000 \times \dfrac{1 }{0.00625}}[/tex]
=3394.11
The order cycle length = [tex]\dfrac{EOQ}{D}\times 360[/tex]
[tex]= \dfrac{3394.11}{36000}\times 360[/tex]
= 33.94
≅ 34 days