Answer:
[tex]\displaystyle SA_{Total} = \frac{279 \pi}{4} + 339 \ mm^2[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
Geometry
Shapes
Congruency
- Congruent sides and lengths
Radius Formula: [tex]\displaystyle r = \frac{d}{2}[/tex]
Surface Area of a Rectangular Prism Formula: SA = 2(wl + hl + hw)
- w is width
- l is length
- h is height
Surface Area of a Cylinder Formula: SA = 2πrh + 2πr²
Step-by-step explanation:
Step 1: Define
Identify
[Rectangular Prism] w = 9 mm
[Rectangular Prism] l = 11 mm
[Rectangular Prism] h = 6 mm
[Cylinder] d = 9 mm
[Cylinder] h = 11 mm
Step 2: Derive
Modify Surface Area equations and combine
- [Surface Area of a Cylinder Formula] Factor: [tex]\displaystyle SA = 2(\pi rh + \pi r^2)[/tex]
- [Surface Area of a Cylinder Formula] Divide by 2 [Semi-Cylinder]: [tex]\displaystyle SA = \pi rh + \pi r^2[/tex]
- [Surface Area of a Semi-Cylinder] Substitute in r [Radius Formula]: [tex]\displaystyle SA = \pi (\frac{d}{2})h + \pi (\frac{d}{2})^2[/tex]
- [Surface Area of a Semi-Cylinder] Evaluate exponents: [tex]\displaystyle SA = \pi (\frac{d}{2})h + \pi (\frac{d^2}{4})[/tex]
- [Surface Area of a Semi-Cylinder] Multiply: [tex]\displaystyle SA = \frac{\pi dh}{2} + \frac{\pi d^2}{4}[/tex]
- [Surface Area of a Rectangular Prism] Remove top: [tex]\displaystyle SA = 2(wh + lh) + lw[/tex]
- Combine Surface Area equations: [tex]\displaystyle SA_{Total} = \frac{\pi dh}{2} + \frac{\pi d^2}{4} + 2(wh + lh) + lw[/tex]
Step 3: Find Surface Area
- Substitute in variables [Combined Surface Area equation]: [tex]\displaystyle SA_{Total} = \frac{\pi (9 \ mm)(11 \ mm)}{2} + \frac{\pi (9 \ mm)^2}{4} + 2[(9 \ mm)(6 \ mm) + (11 \ mm)(6 \ mm)] + (11 \ mm)(9 \ mm)[/tex]
- Evaluate exponents: [tex]\displaystyle SA_{Total} = \frac{\pi (9 \ mm)(11 \ mm)}{2} + \frac{\pi (81 \ mm^2)}{4} + 2[(9 \ mm)(6 \ mm) + (11 \ mm)(6 \ mm)] + (11 \ mm)(9 \ mm)[/tex]
- Multiply: [tex]\displaystyle SA_{Total} = \frac{99\pi \ mm^2}{2} + \frac{81\pi \ mm^2}{4} + 2[54 \ mm^2 + 66 \ mm^2] + 99 \ mm^2[/tex]
- [Brackets] Add: [tex]\displaystyle SA_{Total} = \frac{99\pi \ mm^2}{2} + \frac{81\pi \ mm^2}{4} + 2[120 \ mm^2] + 99 \ mm^2[/tex]
- Multiply: [tex]\displaystyle SA_{Total} = \frac{99\pi \ mm^2}{2} + \frac{81\pi \ mm^2}{4} + 240 \ mm^2 + 99 \ mm^2[/tex]
- Add: [tex]\displaystyle SA_{Total} = \frac{279 \pi}{4} + 339 \ mm^2[/tex]