use the picture to write each ratio as a simplified fraction (how are you going to find the length of the third side?) show your thinking

use the picture to write each ratio as a simplified fraction how are you going to find the length of the third side show your thinking class=

Respuesta :

Nayefx

Answer:

See below

Step-by-step explanation:

to figure out the ratios we must figure out the length of hypotenuse first to do so we can consider Pythagoras theorem given by

[tex] \displaystyle {a}^{2} + {b}^{2} = {c}^{2} [/tex]

[tex] \displaystyle \implies c = \sqrt{ {a}^{2} + {b}^{2} } [/tex]

substitute:

[tex] \displaystyle c = \sqrt{ {12}^{2} + {9}^{2} } [/tex]

simplify squares:

[tex] \displaystyle c = \sqrt{ 225 } [/tex]

simplify square root:

[tex] \displaystyle c = 15[/tex]

now recall that,

  • [tex] \displaystyle \sin( \theta) = \frac{opp}{hypo} [/tex]
  • [tex] \displaystyle\cos( \theta) = \frac{adj}{hypo} [/tex]
  • [tex] \displaystyle \tan( \theta) = \frac{opp}{adj} [/tex]

the ratios with respect to angle w given by

  • [tex] \displaystyle \sin( W) = \frac{12}{15} = \frac{4}{5} [/tex]
  • [tex] \displaystyle \cos(W) = \frac{9}{15} = \frac{3}{5} [/tex]
  • [tex] \displaystyle \tan( W) = \frac{12}{9} = \frac{4}{3} [/tex]

the following ratio with respect to angle X

  • [tex] \displaystyle \sin(X) = \frac{9}{15} = \frac{3}{5} [/tex]
  • [tex] \displaystyle \cos(X) = \frac{12}{15} = \frac{4}{5} [/tex]
  • [tex] \displaystyle \tan( X) = \frac{9}{12} = \frac{3}{4} [/tex]