Respuesta :

Given:

In the circle, [tex]m(\overarc{VUX})=152^\circ[/tex] and [tex]m(\angle MUV)=77^\circ[/tex].

To find:

The following measures:

(a) [tex]m\angle VUX[/tex]

(b) [tex]m\angle UXW[/tex]

Solution:

According to the central angle theorem, the central angle is always twice of the subtended angle intercepted on the same same arc.

[tex]m(VUX)=2\times m\angle VWX[/tex]

[tex]152^\circ=2\times m\angle VWX[/tex]

[tex]\dfrac{152^\circ}{2}=m\angle VWX[/tex]

[tex]76^\circ=m\angle VWX[/tex]

In a cyclic quadrilateral, the opposite angles are supplementary angles.

UVWX is a cyclic quadrilateral. So,

[tex]m\angle VUX+m\angle VWX=180^\circ[/tex]          [Opposite angles of a cyclic quadrilateral]

[tex]m\angle VUX+76^\circ=180^\circ[/tex]

[tex]m\angle VUX=180^\circ-76^\circ[/tex]

[tex]m\angle VUX=104^\circ[/tex]

Now,

[tex]m\angle UXW+m\angle UVW=180^\circ[/tex]          [Opposite angles of a cyclic quadrilateral]

[tex]m\angle UXW+77^\circ =180^\circ[/tex]

[tex]m\angle UXW=180^\circ-77^\circ[/tex]

[tex]m\angle UXW=103^\circ[/tex]

Therefore, [tex]m\angle VUX=104^\circ[/tex]  and [tex]m\angle UXW=103^\circ[/tex] .