In the circle below, suppose m VUX = 152° and mZUVW = 77º. Find the following.
(a) m ZVUX =
(b) m ZUXW =

Given:
In the circle, [tex]m(\overarc{VUX})=152^\circ[/tex] and [tex]m(\angle MUV)=77^\circ[/tex].
To find:
The following measures:
(a) [tex]m\angle VUX[/tex]
(b) [tex]m\angle UXW[/tex]
Solution:
According to the central angle theorem, the central angle is always twice of the subtended angle intercepted on the same same arc.
[tex]m(VUX)=2\times m\angle VWX[/tex]
[tex]152^\circ=2\times m\angle VWX[/tex]
[tex]\dfrac{152^\circ}{2}=m\angle VWX[/tex]
[tex]76^\circ=m\angle VWX[/tex]
In a cyclic quadrilateral, the opposite angles are supplementary angles.
UVWX is a cyclic quadrilateral. So,
[tex]m\angle VUX+m\angle VWX=180^\circ[/tex] [Opposite angles of a cyclic quadrilateral]
[tex]m\angle VUX+76^\circ=180^\circ[/tex]
[tex]m\angle VUX=180^\circ-76^\circ[/tex]
[tex]m\angle VUX=104^\circ[/tex]
Now,
[tex]m\angle UXW+m\angle UVW=180^\circ[/tex] [Opposite angles of a cyclic quadrilateral]
[tex]m\angle UXW+77^\circ =180^\circ[/tex]
[tex]m\angle UXW=180^\circ-77^\circ[/tex]
[tex]m\angle UXW=103^\circ[/tex]
Therefore, [tex]m\angle VUX=104^\circ[/tex] and [tex]m\angle UXW=103^\circ[/tex] .