Answer:
Not a linear relationship
Step-by-step explanation:
Given
The attached table
Required
Linear or not
To do this, we simply calculate the slope of the table at different intervals.
Slope (m) is calculated as:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Let:
[tex](x_1,y_1) = (0,0)[/tex]
[tex](x_2,y_2) = (0.5,7.2)[/tex]
So, the slope is:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
[tex]m = \frac{7.2 - 0}{0.5-0}[/tex]
[tex]m = \frac{7.2}{0.5}[/tex]
[tex]m = 14.4[/tex]
Let:
Let:
[tex](x_1,y_1) = (1,10.7)[/tex]
[tex](x_2,y_2) = (2,12.2)[/tex]
So, the slope is:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
[tex]m = \frac{12.2 - 10.7}{2 - 1}[/tex]
[tex]m = \frac{1.5}{1}[/tex]
[tex]m = 1.5\\[/tex]
See that the calculated slopes are not equal.
Hence, it is not linear