Respuesta :

Answer:

Cov ( X, Y ) = 1/2

Step-by-step explanation:

X = Number of heads in the first 4 flips

Y = Number of heads in the last 4 flips

Given that X and Y are binomial variables hence

P( probability ) = 1/2

Find Cov( X; Y )

xi = result of the ith flip ∴ X = x1 + x2 + x3 + x4

yj = result of the  jth flip ∴ Y = y3 + y4 + y5 + y6

covariance of  xi and yi = 1/2 * 1/2 = 1/4   when i = j  and it is = 0 when i ≠ j

hence Cov( X; Y ) can be expressed as

Cov( X; Y ) = ∑[tex]_{i}[/tex]^4 ∑[tex]_{j}[/tex]^6 ∴ Cov( Xi , Yj ) = 2/4 = 1/2  (  given that i = j )