Respuesta :

Answer:

Function g(x)

Step-by-step explanation:

Given

See attachment for functions

Required

Which has an average rate of 3 over [1,3]

The average rate of change (m) is calculated as:

[tex]m = \frac{f(b) - f(a)}{b -a}[/tex]

Where:

[tex][a,b] = [1,3][/tex]

So, we have:

[tex]m = \frac{f(3) - f(1)}{3 -1}[/tex]

[tex]m = \frac{f(3) - f(1)}{2}[/tex]

From the table f(x), we have:

[tex]f(3) = 6\\ f(1) = -2[/tex]

So:

[tex]m = \frac{6 - -2}{2}[/tex]

[tex]m = \frac{8}{2}[/tex]

[tex]m =4[/tex]

From the graph of g(x), we have:

[tex]g(3) = 4\\ g(1) = -2[/tex]

So:

[tex]m = \frac{g(3) - g(1)}{2}[/tex]

[tex]m = \frac{4 - -2}{2}[/tex]

[tex]m = \frac{6}{2}[/tex]

[tex]m =3[/tex]

Since only one of the function has an average rate of change of 3 over the given interval,

Then g(x) answers the question

Ver imagen MrRoyal