Respuesta :

cairde

Answer:

55°

Step-by-step explanation:

Let the centre of the circle be C

mFG=110 (It's hard to read but I assume thats what the 110 marks)

mFG=<FCG=110

Consider ΔFCG (an isosceles triangle since CF=CG=radius). Angles in a triangle add to 180 and <CFG=<CGF so <CFG=(1/2)(180-110)=(1/2)(70)=35°

<EFG+<CFG=90

<EFG+35=90

<EFG=55°