Respuesta :
Answer:
[tex]\displaystyle \frac{dy}{dx} = \frac{-4}{3x^5}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = \frac{\frac{1}{x^4}}{3}[/tex]
Step 2: Differentiate
- Derivative Property [Addition/Subtraction]: [tex]\displaystyle y' = \frac{1}{3} \frac{d}{dx} \bigg[ \frac{1}{x^4} \bigg][/tex]
- Rewrite: [tex]\displaystyle y' = \frac{1}{3} \frac{d}{dx}[x^{-4}][/tex]
- Basic Power Rule: [tex]\displaystyle y' = \frac{1}{3}(-4x^{-5})[/tex]
- Simplify: [tex]\displaystyle y' = \frac{-4}{3x^5}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation