A furniture manufacturing company manufactures dining-room tables and chairs. A table requires 8 labor-hour s for assembling and 2 labor-h ours for finishing. A chair requires 2 labor-hours for assembling and 1 labor-hour for finishing. The maximum labor-hours available p er day for assembly and finishing are 400 and 120, respectively. If x is the number of tables and y is the number of chairs produced per day, write a system of linear inequalities that indicates appropriate restraints on x and y.

Required:
Find the set of feasible solutions graphically for the number of tables and chairs that can be produced.

Respuesta :

Answer:

See Annex   In blue feasible region ( using Geogebra)

Step-by-step explanation:

Table 1.-

                                         Assembling hours           finishing hours

Product (tables)  x                         8                                    2

Product ( chairs)  y                         2                                    1

Availability                                  400                                  120

Constrains:

1.-Availability of assembling hours  400

8*x   +  2* y    ≤  400

2.-Availability of Finishing hours

2*x  + 1*y  ≤  120

3.-General constraints

x ≥ 0    y  ≥  0   integers

Ver imagen jtellezd