Respuesta :

Answer:

[tex] m = 3\sqrt{2} [/tex]

[tex] n = 3\sqrt{2} [/tex]

Step-by-step explanation:

Reference angle = 45°

Opposite = m

Adjacent = n

Hypotenuse = 6

✔️To find m, apply SOH:

Sin 45 = Opp/Hyp

Sin 45 = m/6

m = 6 × Sin 45

[tex] m = 6*\frac{1}{\sqrt{2}} [/tex] (sin 45 = 1/√2)

[tex] m = \frac{6}{\sqrt{2}} [/tex]

Rationalize

[tex] m = \frac{6*\sqrt{2}}{\sqrt{2}*\sqrt{2}} [/tex]

[tex] m = \frac{6\sqrt{2}}{2} [/tex]

[tex] m = 3\sqrt{2} [/tex]

✔️To find n, apply CAH:

Cos 45 = Adj/Hyp

Cos 45 = n/6

n = 6 × Cos 45

[tex] n = 6*\frac{1}{\sqrt{2}} [/tex] (cos 45 = 1/√2)

[tex] n = \frac{6}{\sqrt{2}} [/tex]

Rationalize

[tex] n = \frac{6*\sqrt{2}}{\sqrt{2}*\sqrt{2}} [/tex]

[tex] n = \frac{6\sqrt{2}}{2} [/tex]

[tex] n = 3\sqrt{2} [/tex]