a) Find the slope, x-intercept, y-intercept of the line (L):
3x+4y-6= 0 and draw its graphs.
b) Find the equation of a line perpendicular to the line (L) in part (a) and
passing through the point (1, -2).​

Respuesta :

Answer: 2, 1.5 , -0.75

(b) [tex]4x-3y-10=0[/tex]

Step-by-step explanation:

Given

line is [tex]3x+4y-6=0[/tex]

Converting it into intercept form

[tex]\Rightarrow 3x+4y=6\\\\\Rightarrow \dfrac{3x}{6}+\dfrac{4y}{6}=\dfrac{6}{6}\\\\\Rightarrow \dfrac{x}{2}+\dfrac{y}{1.5}=1[/tex]

So, the x-intercept is [tex]2[/tex] and y-intercept is [tex]1.5[/tex]

The slope is given by

[tex]-\dfrac{\frac{1}{2}}{\frac{1}{1.5}}=-0.75[/tex]

(b) the line perpendicular to the above line and passing through [tex](1,-2)[/tex]

The slope of the required line

[tex]m=-\dfrac{1}{-0.75}\\\\m=\dfrac{4}{3}[/tex]

Equation of the line is given by

[tex]\Rightarrow \dfrac{y-(-2)}{x-1}=\dfrac{4}{3}\\\\\Rightarrow 3y+6=4x-4\\\Rightarrow 4x-3y-10=0[/tex]