Respuesta :

Answer:

The value of tan(74°) is [tex]\frac{24}{7}[/tex].

Step-by-step explanation:

In a right angled triangle

[tex]\tan\theta=\frac{perpendicular}{base}[/tex]

The given triangle is a right angle ed triangle because one angle is 90°.

For angle 74° perpendicular is the opposite sides and base is another leg.

[tex]perpendicular=24[/tex]

[tex]base=7[/tex]

[tex]\tan(74^{\circ})=\frac{24}{7}[/tex]

Therefore the value of tan(74°) is [tex]\frac{24}{7}[/tex].

Answer:

Step-by-step explanation:

Alright, lets get started.

Using SOH CAH TOA,

[tex]tan 74 = \frac{opposite}{adjacent}[/tex]

Putting the value of side opposite as 24 and adjacent as 7

[tex]tan 74 = \frac{24}{7}[/tex]

Hence

[tex]tan 74 = 3.428[/tex]

So, the answer is 3.428   :   Answer

Hope it will help :)

Ver imagen stokholm