Respuesta :
Q1. The answer is [tex]\frac{8x^{3}y^{6} }{27} [/tex]
[tex]( \frac{16 x^{5} y^{10}}{81x y^{2} } )^{ \frac{3}{4} }= ( \frac{16}{81}* \frac{ x^{5} }{x}* \frac{ y^{10} }{y^{2}} )^{ \frac{3}{4} } \\ \\ \frac{ x^{a} }{ x^{b} }= x^{a-b} \\ \\ ( \frac{16}{81}* \frac{ x^{5} }{x}*\frac{ y^{10} }{y^{2}} )^{ \frac{3}{4} }}=( \frac{16}{81 }* x^{5-1}* y^{10-2})^{ \frac{3}{4} }=( \frac{16}{81 }* x^{4}* y^{8})^{ \frac{3}{4} }= \\ \\ = (\frac{16}{18} )^{ \frac{3}{4} }*(x^{4})^{ \frac{3}{4} }*(y^{8})^{ \frac{3}{4} }=[/tex]
[tex]\frac{(16)^{ \frac{3}{4} }}{(18)^{ \frac{3}{4} }}*(x^{4})^{ \frac{3}{4} }*(y^{8})^{ \frac{3}{4} }=\frac{( 2^{4} )^{ \frac{3}{4} }}{( 3^{4} )^{ \frac{3}{4} }}*(x^{4})^{ \frac{3}{4} }*(y^{8})^{ \frac{3}{4} } \\ \\ (x^{a} )^{b} = x^{a*b} \\ \\ \frac{( 2^{4} )^{ \frac{3}{4} }}{( 3^{4} )^{ \frac{3}{4} }}*(x^{4})^{ \frac{3}{4} }*(y^{8})^{ \frac{3}{4} } = \frac{ 2^{4* \frac{3}{4} } }{ 3^{4* \frac{3}{4} } } * x^{4* \frac{3}{4} } * y^{8*\frac{3}{4}} = \frac{ 2^{3} }{ 3^{3} } * x^{3} *y^{6} =[/tex]
[tex]= \frac{8x^{3}y^{6} }{27} [/tex]
Q2. The answer is 1/16
[tex](-64) ^ \frac{-2}{3} =(-1* 2^{6} ) ^ \frac{-2}{3}=(-1)^ \frac{-2}{3} *(2^{6} ) ^ \frac{-2}{3} \\\\x^{-a} = \frac{1}{ x^{a} } \\\\(-1)^ \frac{-2}{3} *(2^{6} ) ^ \frac{-2}{3} = \frac{1}{(-1)^ \frac{2}{3}} *\frac{1}{(2^{6})^ \frac{2}{3}} \\ \\ (x^{a} )^{b}=x^{a*b} \\\\x^{ \frac{a}{b} = \sqrt[b]{ x^{a} } } \\ \\ [/tex]
[tex]\frac{1}{(-1)^ \frac{2}{3}} *\frac{1}{2^{6*\frac{2}{3}}} = \frac{1}{ \sqrt[3]{(-1)^{2} } } * \frac{1}{ 2^{4} } = \frac{1}{ \sqrt[3]{1} } * \frac{1}{16} = \frac{1}{1} * \frac{1}{16}= \frac{1}{16}[/tex]
Q3. The answer is [tex]a^{ \frac{7}{6} }[/tex]
[tex] a^{ \frac{2}{3} } * a^{ \frac{1}{2} } \\ \\ x^{a}* x^{b} =x^{a+b} \\ \\ a^{ \frac{2}{3} } * a^{ \frac{1}{2} }= a^{ \frac{2}{3} + \frac{1}{2} } =a^{ \frac{2*2}{3*2} + \frac{1*3}{2*3} }=a^{ \frac{4}{6} + \frac{3}{6} }=a^{ \frac{4+3}{6} }=a^{ \frac{7}{6} }[/tex]
[tex]( \frac{16 x^{5} y^{10}}{81x y^{2} } )^{ \frac{3}{4} }= ( \frac{16}{81}* \frac{ x^{5} }{x}* \frac{ y^{10} }{y^{2}} )^{ \frac{3}{4} } \\ \\ \frac{ x^{a} }{ x^{b} }= x^{a-b} \\ \\ ( \frac{16}{81}* \frac{ x^{5} }{x}*\frac{ y^{10} }{y^{2}} )^{ \frac{3}{4} }}=( \frac{16}{81 }* x^{5-1}* y^{10-2})^{ \frac{3}{4} }=( \frac{16}{81 }* x^{4}* y^{8})^{ \frac{3}{4} }= \\ \\ = (\frac{16}{18} )^{ \frac{3}{4} }*(x^{4})^{ \frac{3}{4} }*(y^{8})^{ \frac{3}{4} }=[/tex]
[tex]\frac{(16)^{ \frac{3}{4} }}{(18)^{ \frac{3}{4} }}*(x^{4})^{ \frac{3}{4} }*(y^{8})^{ \frac{3}{4} }=\frac{( 2^{4} )^{ \frac{3}{4} }}{( 3^{4} )^{ \frac{3}{4} }}*(x^{4})^{ \frac{3}{4} }*(y^{8})^{ \frac{3}{4} } \\ \\ (x^{a} )^{b} = x^{a*b} \\ \\ \frac{( 2^{4} )^{ \frac{3}{4} }}{( 3^{4} )^{ \frac{3}{4} }}*(x^{4})^{ \frac{3}{4} }*(y^{8})^{ \frac{3}{4} } = \frac{ 2^{4* \frac{3}{4} } }{ 3^{4* \frac{3}{4} } } * x^{4* \frac{3}{4} } * y^{8*\frac{3}{4}} = \frac{ 2^{3} }{ 3^{3} } * x^{3} *y^{6} =[/tex]
[tex]= \frac{8x^{3}y^{6} }{27} [/tex]
Q2. The answer is 1/16
[tex](-64) ^ \frac{-2}{3} =(-1* 2^{6} ) ^ \frac{-2}{3}=(-1)^ \frac{-2}{3} *(2^{6} ) ^ \frac{-2}{3} \\\\x^{-a} = \frac{1}{ x^{a} } \\\\(-1)^ \frac{-2}{3} *(2^{6} ) ^ \frac{-2}{3} = \frac{1}{(-1)^ \frac{2}{3}} *\frac{1}{(2^{6})^ \frac{2}{3}} \\ \\ (x^{a} )^{b}=x^{a*b} \\\\x^{ \frac{a}{b} = \sqrt[b]{ x^{a} } } \\ \\ [/tex]
[tex]\frac{1}{(-1)^ \frac{2}{3}} *\frac{1}{2^{6*\frac{2}{3}}} = \frac{1}{ \sqrt[3]{(-1)^{2} } } * \frac{1}{ 2^{4} } = \frac{1}{ \sqrt[3]{1} } * \frac{1}{16} = \frac{1}{1} * \frac{1}{16}= \frac{1}{16}[/tex]
Q3. The answer is [tex]a^{ \frac{7}{6} }[/tex]
[tex] a^{ \frac{2}{3} } * a^{ \frac{1}{2} } \\ \\ x^{a}* x^{b} =x^{a+b} \\ \\ a^{ \frac{2}{3} } * a^{ \frac{1}{2} }= a^{ \frac{2}{3} + \frac{1}{2} } =a^{ \frac{2*2}{3*2} + \frac{1*3}{2*3} }=a^{ \frac{4}{6} + \frac{3}{6} }=a^{ \frac{4+3}{6} }=a^{ \frac{7}{6} }[/tex]