Respuesta :

The answer is  16x² - 48xy³ + 36y⁶

(a - b)² = a² - 2ab + b²
In (4x - 6y³)², a = 4x, b = 6y³

 (4x - 6y³)² = (4x)² - 2 * 4x * 6y³ + (6y³)² =
                  = 16x² - 48xy³ + 36y³*² =
                  = 16x² - 48xy³ + 36y⁶

Answer:

The simplified form of the given product [tex]\left(4x\:-\:6y^3\right)^2\:[/tex]  is [tex]16x^2-48xy^3+36y^6[/tex]

Step-by-step explanation:

Given: Expression [tex]\left(4x\:-\:6y^3\right)^2\:[/tex]      

We have to write the simpler form of the given product [tex]\left(4x\:-\:6y^3\right)^2\:[/tex]      

Consider the given expression [tex]\left(4x\:-\:6y^3\right)^2\:[/tex]

Apply perfect square identity [tex]\left(a-b\right)^2=a^2-2ab+b^2[/tex]

[tex]a=4x,\:\:b=6y^3[/tex]

We have,

[tex]=\left(4x\right)^2-2\cdot \:4x\cdot \:6y^3+\left(6y^3\right)^2[/tex]

Simplify, we have,

[tex]=16x^2-48xy^3+36y^6[/tex]

Thus, The simplified form of the given product [tex]\left(4x\:-\:6y^3\right)^2\:[/tex]  is [tex]16x^2-48xy^3+36y^6[/tex]