In quadrilateral ABCD, AD ∥ BC. Quadrilateral A B C D is shown. Sides A D and B C are parallel. The length of A D is 3 x + 7 and the length of B C is 5 x minus 9. What must the length of segment AD be for the quadrilateral to be a parallelogram? 8 units 16 units 31 units 62 units

Respuesta :

Answer:

31 units

Step-by-step explanation:

Given

[tex]AD = 3x + 7[/tex]

[tex]BC = 5x - 9[/tex]

Required

Find

If AD parallel to BC, then:

[tex]AD = BC[/tex]

This gives:

[tex]3x + 7 = 5x - 9[/tex]

Collect like terms

[tex]3x- 5x = -7-9[/tex]

[tex]-2x = -16[/tex]

Solve for x

[tex]x = 8[/tex]

Substitute [tex]x = 8[/tex] in [tex]AD = 3x + 7[/tex]

[tex]AD = 3 * 8 + 7[/tex]

[tex]AD = 31[/tex]

Ver imagen MrRoyal

Answer:

C) 31

Step-by-step explanation: