Respuesta :

Answer:

The percentage increase in [tex]T[/tex] is 20 %.

Step-by-step explanation:

Let be [tex]T = \frac{k\cdot x}{y}[/tex], whose initial parameters are [tex]k = k_{o}[/tex], [tex]x = x_{o}[/tex] and [tex]y = y_{o}[/tex]. If these three parameters are increased by 20 %, then initial and final values of [tex]T[/tex] are, respectively:

Initial value

[tex]T_{i} = \frac{k_{o}\cdot x_{o}}{y_{o}}[/tex] (1)

Final value

[tex]T_{ii} = \frac{(1.2\cdot k_{o})\cdot (1.2\cdot x_{o})}{1.2\cdot y_{o}}[/tex]

[tex]T_{ii} = \frac{1.2\cdot k_{o}\cdot x_{o}}{y_{o}}[/tex] (2)

(1) in (2):

[tex]T_{ii} = 1.2\cdot T_{i}[/tex]

And the percentage increase in T is:

[tex]\%T = \frac{T_{ii}-T_{i}}{T_{i}}\times 100\,\%[/tex] (3)

[tex]\%T = \frac{1.2\cdot T_{i}-T_{i}}{T_{i}}\times 100\,\%[/tex]

[tex]\%T = 20\,\%[/tex]

The percentage increase in [tex]T[/tex] is 20 %.

Answer:

Step-by-step explanation:

Lets subsitute k, x and y as  100 to make it easier for us

So k = 100, x = 100, y = 100

Step 1 :-   T = kx/y

- T = 100 * 100 / 100 = 100

Step 2 :- Increase by 20% = 100 * 20% = 20,    100 + 20 = 120

Step 3 :- Percentage Increase = Increased value OVER original calue          MULTIPLIED by 100%

SO = ( 120 - 100 ) ,,,,   20/100 * 100% = 0.2* 100 = 20%