Answer:
- the mass flow rate of air is 7.53 kg/s
- the exit area is 0.108 m²
Explanation:
Given the data in the question;
lets take a look at the steady state energy equation;
m" = W"[tex]_{cv[/tex] / [ (h₁ - h₂ ) -[tex]\frac{V_2^2}{2}[/tex] ]
Now at;
T₁ = 900K, h₁ = 932.93 k³/kg
T₂ = 500 K, h₂ = 503.02 k³/kg
so we substitute, in our given values
m" = [ 3200 kW × [tex]\frac{1\frac{k^3}{s} }{1kW}[/tex] ] / [ (932.93 - 503.02 )k³/kg -[tex]\frac{100^2\frac{m^2}{s^2} }{2}[/tex]|[tex]\frac{ln}{kg\frac{m}{s^2} }[/tex]||[tex]\frac{1kJ}{10^3N-m}[/tex]| ]
m" = 7.53 kg/s
Therefore, the mass flow rate of air is 7.53 kg/s
now, Exit area A₂ = v₂m" / V₂
we know that; pv = RT
so
A₂ = RT₂m" / P₂V₂
so we substitute
A₂ = {[ [tex](\frac{8.314}{28.97}\frac{k^3}{kg.K})[/tex]×[tex]500 K[/tex]×[tex](7.54 kg/s)[/tex] ] / [(1 bar)(100 m/s )]} |[tex]\frac{1 bar}{10N/m^2}[/tex]||[tex]10^3N.m/1k^3[/tex]
A₂ = 0.108 m²
Therefore, the exit area is 0.108 m²