Respuesta :

Given:

QRST is an isosceles trapezoid with RS||QT.

To find:

The value of x, angle R and angle T.

Solution:

If a transversal line intersect two parallel lines then the sum of same sides interior angles is 180 degrees.

[tex]m\angle Q+m\angle R=180[/tex]

[tex](6x-22)+(8x+34)=180[/tex]

[tex]14x+12=180[/tex]

[tex]14x=180-12[/tex]

[tex]14x=168[/tex]

Divide both sides by 14.

[tex]x=\dfrac{168}{14}[/tex]

[tex]x=12[/tex]

Now,

[tex]m\angle R=(8x+34)^\circ[/tex]

[tex]m\angle R=(8(12)+34)^\circ[/tex]

[tex]m\angle R=(96+34)^\circ[/tex]

[tex]m\angle R=130^\circ[/tex]

We know that the base angles of an isosceles triangle are equal.

[tex]m\angle T=m\angle Q=(6x-22)^\circ[/tex]

[tex]m\angle T=(6(12)-22)^\circ[/tex]

[tex]m\angle T=(72-22)^\circ[/tex]

[tex]m\angle T=50^\circ[/tex]

Therefore, [tex]x=12,\ m\angle R=130^\circ[/tex] and [tex]m\angle T=50^\circ[/tex].