Respuesta :

Answer:

Triangle a: 44.7°

Triangle b: 30.5°

Triangle c: 67.4°

Triangle d: 56.6°

Step-by-step explanation:

Recall: SOHCAHTOA

a. Reference angle = [tex] \theta [/tex]

Opposite = 19

Hypotenuse = 27

Apply SOH:

[tex] sin(\theta) = \frac{Opp}{Hyp} [/tex]

[tex] sin(\theta) = \frac{19}{27} [/tex]

[tex] \theta = sin^{-1}(\frac{19}{27}) [/tex]

[tex] \theta = 44.7 degrees [/tex] (nearest tenth)

b. Reference angle = [tex] \theta [/tex]

Opposite = 33

Adjacent = 56

Apply TOA:

[tex] tan(\theta) = \frac{Opp}{Adj} [/tex]

[tex] tan(\theta) = \frac{33}{56} [/tex]

[tex] \theta = tan^{-1}(\frac{33}{56}) [/tex]

[tex] \theta = 30.5 degrees [/tex] (nearest tenth)

c. Reference angle = [tex] \theta [/tex]

Opposite = 12

Adjacent = 5

Apply TOA:

[tex] tan(\theta) = \frac{Opp}{Adj} [/tex]

[tex] tan(\theta) = \frac{12}{5} [/tex]

[tex] \theta = tan^{-1}(\frac{12}{5}) [/tex]

[tex] \theta = 67.4 degrees [/tex] (nearest tenth)

d. Reference angle = [tex] \theta [/tex]

Hypotenuse = 20

Adjacent = 11

Apply CAH:

[tex] cos(\theta) = \frac{Adj}{Hyp} [/tex]

[tex] cos(\theta) = \frac{11}{20} [/tex]

[tex] \theta = cos^{-1}(\frac{11}{20}) [/tex]

[tex] \theta = 56.6 degrees [/tex] (nearest tenth)