Answer:
[tex]v=\sqrt{\dfrac{H\times 2gx}{m}+u^2}[/tex]
Step-by-step explanation:
The given formula is :
[tex]H=\dfrac{m(v^2-u^2)}{2gx}[/tex]
We need to find the formula for v.
Cross multiplying the given formula.
[tex]H\times 2gx=m(v^2-u^2)[/tex]
Dividing both sides by m. So,
[tex]\dfrac{H\times 2gx}{m}=\dfrac{m(v^2-u^2)}{m}\\\\(v^2-u^2)=\dfrac{H\times 2gx}{m}[/tex]
Adding both sides by u².
[tex](v^2-u^2)+u^2=\dfrac{H\times 2gx}{m}+u^2\\\\v^2=\dfrac{H\times 2gx}{m}+u^2\\\\\text{So},\\\\v=\sqrt{\dfrac{H\times 2gx}{m}+u^2}[/tex]
Hence, this is the required formula.