Respuesta :

Answer:

[tex]v=\sqrt{\dfrac{H\times 2gx}{m}+u^2}[/tex]

Step-by-step explanation:

The given formula is :

[tex]H=\dfrac{m(v^2-u^2)}{2gx}[/tex]

We need to find the formula for v.

Cross multiplying the given formula.

[tex]H\times 2gx=m(v^2-u^2)[/tex]

Dividing both sides by m. So,

[tex]\dfrac{H\times 2gx}{m}=\dfrac{m(v^2-u^2)}{m}\\\\(v^2-u^2)=\dfrac{H\times 2gx}{m}[/tex]

Adding both sides by u².

[tex](v^2-u^2)+u^2=\dfrac{H\times 2gx}{m}+u^2\\\\v^2=\dfrac{H\times 2gx}{m}+u^2\\\\\text{So},\\\\v=\sqrt{\dfrac{H\times 2gx}{m}+u^2}[/tex]

Hence, this is the required formula.