Respuesta :

Given:

The radical expression is

[tex]7\sqrt[3]{8x^2y}+2\sqrt[3]{27x^5y^4}[/tex]

To find:

The value of the expression after addition.

Solution:

We have,

[tex]7\sqrt[3]{8x^2y}+2\sqrt[3]{27x^5y^4}[/tex]

It can be rewritten as

[tex]=7\sqrt[3]{2^3x^2y}+2\sqrt[3]{3^3x^3x^2y^3y}[/tex]

[tex]=7(2)\sqrt[3]{x^2y}+2\sqrt[3]{(3xy)^3x^2y}[/tex]

[tex]=14\sqrt[3]{x^2y}+2(3xy)\sqrt[3]{x^2y}[/tex]

[tex]=14\sqrt[3]{x^2y}+6xy\sqrt[3]{x^2y}[/tex]

Taking out the common factors, we get

[tex]=2\sqrt[3]{x^2y}(7+3xy)[/tex]

The value of given expression after addition is [tex]=2\sqrt[3]{x^2y}(7+3xy)[/tex].