Respuesta :

Answer:

The value of y = 0

Step-by-step explanation:

Given the equation

[tex]8^3\cdot 8^{-5}\cdot 8^{\:y}=8^{-2}[/tex]

Apply exponent rule:  [tex]a^b\cdot \:a^c=a^{b+c}[/tex]

so

[tex]8^3\cdot \:\:8^{-5}=8^{3-5}=8^{-2}=\frac{1}{8^2}=\frac{1}{64}[/tex]

Thus, the equation becomes

[tex]\frac{1}{64}\left(8\:^y\right)=\frac{1}{64}[/tex]

Divide both sides by 1/64

[tex]\frac{\frac{1}{64}\left(8\:^y\right)}{\frac{1}{64}}=\frac{\frac{1}{64}}{\frac{1}{64}}[/tex]

[tex]8\:^y=1[/tex]

Solve Exponent

[tex]8\:^y=1[/tex]

Take log of both sides

[tex]\:log\left(8\:^y\right)\:=log\:\left(1\right)[/tex]

[tex]y\cdot \left(log\left(8\right)\right)=log\left(1\right)[/tex]

[tex]y\:=\frac{log\left(1\right)}{\left(log\left(8\right)\right)}[/tex]

[tex]y = 0[/tex]

Therefore, the value of y = 0