Answer:
We conclude that the length of LM if L(3,4) and M(1,-2) will be:
[tex]d = 6.3[/tex]
Hence, option D is correct.
Step-by-step explanation:
Given
Determining the length of LM
The length of the distance between (x₁, y₁) and (x₂, y₂) can be determined using the formula
[tex]d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]
substituting (x₁, y₁) = (3, 4) and (x₂, y₂) = (1, -2)
[tex]=\sqrt{\left(1-3\right)^2+\left(-2-4\right)^2}[/tex]
[tex]=\sqrt{2^2+6^2}[/tex]
[tex]=\sqrt{4+36}[/tex]
[tex]=\sqrt{40}[/tex]
[tex]=\sqrt{4\times 10}[/tex]
[tex]=\sqrt{2^2\times \:10}[/tex]
[tex]=2\sqrt{10}[/tex]
[tex]=6.3[/tex]
Therefore, we conclude that the length of LM if L(3,4) and M(1,-2) will be:
[tex]d = 6.3[/tex]
Hence, option D is correct.