Rectangle A, B, C, D is graphed in the coordinate plane. The following are the vertices of the rectangle: A(-6, -4),  B(-4,-4), C(-4, -2), and D(-6, -2). What is the perimeter of rectangle A, B, C, D?

Rectangle A B C D is graphed in the coordinate plane The following are the vertices of the rectangle A6 4 B44 C4 2 and D6 2 What is the perimeter of rectangle A class=

Respuesta :

Answer:

Perimeter of rectangle ABCD = 9.64 units

Step-by-step explanation:

The formula used to calculate perimeter of rectangle is:

[tex]Perimeter\: of\: rectangle=2(Length+ Width)[/tex]

We know that rectangle has opposite sides same i.e Length (AB and CD) are same and Width( AD and BD) are same

We need to find Length and Width to find the perimeter

So, if we find Length AB and Width AC we can find perimeter

Finding Length AB

The length AB can be found using distance formula: [tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

We have A =(-6,-4) and B(-4,-4)

So, x_1=-6, y_1=-4, x_2=-4, y_2=-4

Putting values in formula and finding length

[tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\Distance=\sqrt{(-4-(-6))^2+(-4-(-4))^2}\\Distance=\sqrt{(-4+6)^2+(-4+4)^2}\\Distance=\sqrt{(2)^2+(0)^2}\\Distance=\sqrt{4+0}\\Distance = 2[/tex]

So, Length AB = 2

Now, Finding Width AC

The length AB can be found using distance formula: [tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

We have A =(-6,-4) and C(-4,-2)

So, x_1=-6, y_1=-4, x_2=-4, y_2=-2

Putting values in formula and finding length

[tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\Distance=\sqrt{(-6-(-4))^2+(-4-(-2))^2}\\Distance=\sqrt{(-6+4)^2+(-4+2)^2}\\Distance=\sqrt{(-2)^2+(-2)^2}\\Distance=\sqrt{4+4}\\Distance = \sqrt{8}\\Distance=2.82[/tex]

So, Width AD = 2.82

Now, We have Length = 2 and Width = 2.82

Finding perimeter of rectangle

[tex]Perimeter\: of\: rectangle=2(Length+ Width)\\Perimeter\: of\: rectangle=2(2+ 2.82)\\Perimeter\: of\: rectangle=2(4.82)\\Perimeter\: of\: rectangle=9.64[/tex]

So, Perimeter of rectangle ABCD = 9.64 units