Respuesta :
Answer:
Step-by-step explanation:
Given that:
[tex]f(x) = x^3 + x - 3 = 0[/tex]
Since the given function is equal to zero, then the function :
[tex]f(x) = x^3 + x - 3[/tex]
where;
[tex]x = 1[/tex] and
[tex]x = 2[/tex]
[tex]f(x) = (1)^3 + (1) - 3 \\ \\ f(x) = 1 + 1 - 3 \\ \\f(x) = -1 < 0[/tex]
[tex]f(2) = x^3 + x - 3 \\ \\f(2) = (2)^3 + 3 - 3 \\ \\f(2) = 8 + 3 - 3 \\ \\f(2) = 11 - 3 \\ \\f(2) = 8 > 0 \\ \\[/tex]
Thus; f(1) < 0 and f(2) > 0
The equation a < 0 and equation b > 0.
Given:
[tex]\to x^3 + x -3 =0[/tex]
x in between 1 and 2
To find:
value=?
Solution:
[tex]\to x^3 + x -3 =0[/tex]
put value x= 1 and x in 2 in the above equation:
[tex]\to 1^3 + 1 -3 =0\\\\\to 1 + 1 -3 =0\\\\\to 2 -3 =0\\\\\to -1=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{Equation (a)} \\\\ \to 2^3 + 2 -3 =0\\\\\to 8+ 2 -3 =0\\\\\to 10 -3 =0\\\\\to 7=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{Equation (b)}[/tex]
Therefore the equation a < 0 and equation b > 0.
Learn more:
brainly.com/question/16992643