The dimensions of a rectangle can be given by x+9 and x-2. If the area is 60ft^2, what is the value of X?

Using what you solved for x, what are the dimensions of the rectangle

Respuesta :

Answer:

[tex]x=5[/tex]

Dimensions of rectangle are

W=14 and L = 3

Step-by-step explanation:

Are of rectangle is

[tex]A=WL[/tex] --------(1)

Where W is width and L is length of rectangle

Here

A=60

W=x+9

L=x-2

Substituting values in equation (1)

[tex]60 = (x+9) (x-2)[/tex]

[tex]60 = x^{2} +9x -2x -18[/tex]

[tex]x^{2} + 7x - 78 = 0[/tex]

Using quadratic formula

[tex]x=\frac{-b +/- \sqrt{b^{2} - 4ac} }{2a}[/tex]

Here a=1, b=7 and C=-78

[tex]x= \frac{-7 +/- \sqrt{7^{2} - 4(-78)} }{2}[/tex]                   (Here +/- = ±)

[tex]x= \frac{-7 +/- \sqrt{ 49 + 312} }{2}[/tex]

[tex]x= \frac{-7 +/- \sqrt{ 361} }{2}\\x= \frac{-7+/- 19}{2}[/tex][tex]x= \frac{-7 + 19 }{2} \ \ and \ \ x= \frac{-7-19 }{2}[/tex]

[tex]x= \frac{12 }{2} \ \ and \ \ x= \frac{-26 }{2}[/tex]

[tex]x= 5 \ \ and \ \ x= -13[/tex]

x cannot be negative (Negative x means -ve dimensions of rectangle). Therefore

[tex]x=5[/tex]

Dimensions of the rectangle are

[tex]W=x+9 = 5+9 = 14[/tex]

[tex]L= x - 2 = 5-2 = 3[/tex]