Respuesta :

Answer:

The coordinates of the point 3/5 of the way from A(-4,-4) to B(6,6) are (2, 2).

Step-by-step explanation:

Given the points

  • A(-4,-4)
  • B(6,6)

We need to find the coordinates of the point 3/5 of the way from A(-4,-4) to B(6,6).

Let P be the required point, then

AP : AB = 3 : 5

as

  • AB = AP + BP

so

AP / AB = 3/5

AP / (AP + BP) = 3/5

5AP = 3(AP + BP)

5AP = 3AP + 3BP

2AP = 3BP

AP/BP = 3/2

AP : BP = 3 : 2

The formula of the coordinates of a point that divides the line joining the points (a, b) and (c, d) in the ratio m : n is:

[tex]\left(\frac{mc+na}{m+n},\:\frac{md+nb}{m+n}\right)[/tex]

For the given division,

m : n = 3 : 2

Thus, the coordinates of the point P are:

[tex]\left(\frac{3\left(6\right)+2\left(-4\right)}{3+2},\:\frac{3\left(6\right)+2\left(-4\right)}{3+2}\right)[/tex]

[tex]=\left(\frac{18-8}{5},\:\frac{18-8}{5}\right)[/tex]

[tex]=\left(\frac{10}{5},\:\frac{10}{5}\right)[/tex]

[tex]=\left(2,\:2\right)[/tex]

Therefore, the coordinates of the point 3/5 of the way from A(-4,-4) to B(6,6) are (2, 2).