Considering the following polymer size fractions of a given polymer sample:
Fraction Molecular Weight Number of Chains
1 6,500 400
2 10,000 1000
3 1,000,000 8
(a) Calculate the number-average molecular weight of the polymer.
(b) Calculate the weight-average molecular weight of the polymer.
(c) Which average molecular weight did the 8 chains of molecular weight of 1,000,000 most significantly affect? why?
(d) Calculate the polydispersity index(PI = (Mw/Mn) of the polymer

Respuesta :

Answer:

Explanation:

From the information given:

Molecular weight Mi      Number of chains (Ni)      NiMi

400                                           6500                        2600000

1000                                         10000                       10000000

8                                               1000000                   8000000

[tex]\sum_{Ni} = 1408[/tex]                                                [tex]\sum _{NiMi}[/tex] = 20600000

Thus, the average number of molecular weight = [tex]\dfrac{\sum_{NiMi}}{\sum_{Ni} }[/tex]

[tex]= \dfrac{20600000}{1408}[/tex]

= 14630.68

b)

weight-average molecular weight  = [tex]\dfrac{\sum _{NiMi^2} }{\sum _{NiMi}}[/tex]

[tex]Ni[/tex]                  [tex]Mi[/tex]             [tex]Mi^2[/tex]                     [tex]Ni[/tex] [tex]Mi^2[/tex]

400              6500          42.25 × 10⁶        16.9  × 10⁹

1000             10000        100 × 10⁶            100 × 10⁹

8                   1000000    1 × 10¹²               800 × 10⁹

                                                                [tex]\sum _{NiMi^2} = 916.9 \times 10^9[/tex]

weight-average molecular weight   [tex]=\dfrac{916.9 \times 10^9 }{20.6 \times 10^6}[/tex]

= 44509.71

c)

The number average molecular weight is most significantly affected. This is because the number average molecular weight value is worth more in comparison to the weight-average molecular weight.

d)

The polydispersity index (PI) = [tex]\dfrac{\overline {M_W}}{\overline {M_n}}[/tex]

[tex]PI = \dfrac{44509.71}{14630.68}[/tex]

PI = 3.04