Verify the given linear approximation at a = 0. Then determine the values of x for which the linear approximation is accurate to within 0.1. (Enter your answer using interval notation. Round your answers to three decimal places.) 4 1 + 2x ≈ 1 + 1 2 x

Respuesta :

Answer:

x ∈ [-0.369, 0.678]

Step-by-step explanation:

To prove - [tex]\sqrt[4]{1 + 2x}[/tex] ≈ 1 + [tex]\frac{1}{2}[/tex] x

As given , f(x) = [tex]\sqrt[4]{1 + 2x}[/tex]

As we know that the linear approximation can be defined as :

L(x) = f(a) + f'(a)(x-a)             .........(1)

Now,

We have to show that at a = 0 , equation (1) satisfies

Now,

f(0) = [tex]\sqrt[4]{1 + 0}[/tex] = 1

Also,

f'(x) =

[tex]\frac{d}{dx} (\sqrt[4]{1 + 2x} ) = \frac{1}{4}(1 + 2x)^{\frac{1}{4} - 1}\frac{d}{dx}(1 + 2x) ) \\ = \frac{1}{4}(1 + 2x)^{\frac{-3}{4} } (2)\\ = \frac{1}{2}(1 + 2x)^{\frac{-3}{4} }\\[/tex]

∴ we get

f'(x) = [tex]\frac{1}{2}(1 + 2x)^{-\frac{3}{4} }[/tex]

⇒f'(0) = [tex]\frac{1}{2}[/tex]

Now, equation (1) becomes

L(x) = f(0) + f'(0)(x-0)

     = 1 + [tex]\frac{1}{2}[/tex] (x)

⇒ [tex]\sqrt[4]{1 + 2x}[/tex] ≈ 1 + [tex]\frac{1}{2}[/tex] x

Hence verified.

Now,

|[tex]\sqrt[4]{1 + 2x}[/tex] - (1 + [tex]\frac{1}{2}[/tex] x ) | ≤ 0.1

⇒ -0.36893 ≤ x ≤ 0.67766

⇒x ∈ [-0.369, 0.678]