Answer:
The inverse of function [tex]f(x)= (x+7)^5[/tex] is [tex]\mathbf{f^{-1} (x)=\sqrt[5]{x}+7}[/tex]
Option A is correct option.
Step-by-step explanation:
For the function [tex]f(x)= (x+7)^5[/tex], Find [tex]f^{-1} (x)[/tex]
For finding inverse of x,
First let:
[tex]y=(x+7)^5[/tex]
Now replace x with y and y with x
[tex]x=(y+7)^5[/tex]
Now, solve for y
Taking 5th square root on both sides
[tex]\sqrt[5]{x}=\sqrt[5]{(y+7)^5}\\\sqrt[5]{x}=y+7\\=> y+7=\sqrt[5]{x}\\y=\sqrt[5]{x}-7[/tex]
Now, replace y with [tex]f^{-1} (x)[/tex]
[tex]f^{-1} (x)=\sqrt[5]{x}+7[/tex]
So, the inverse of function [tex]f(x)= (x+7)^5[/tex] is [tex]\mathbf{f^{-1} (x)=\sqrt[5]{x}+7}[/tex]
Option A is correct option.