Respuesta :

Answer:

[tex]f(x)=(\frac{1}{4})^{x-b}[/tex]

Step-by-step explanation:

We are given that

(0,1024),(1,256),(2,64),(3,16)and(4,4)

From given data we assume an exponential function

[tex]f(x)=a^{b+x}[/tex]

where b and a are constant

[tex]f(0)=1024[/tex]

[tex]1024=a^b[/tex]...(1)

[tex]f(1)=256[/tex]

[tex]256=a^{b+1}[/tex]...(2)

Equation (1) divided by equation (2)

Then, we get

[tex]\frac{1024}{256}=\frac{a^{b}}{a^{b+1}}[/tex]

[tex]4=a^{-1}[/tex]

[tex]a=\frac{1}{4}[/tex]

Using the the value of a in equation (1)

[tex]1024=(\frac{1}{4})^{b}[/tex]

[tex]4^{5}=4^{-b}[/tex]

[tex]-b=5[/tex]

[tex]b=-5[/tex]

Therefore, the exponential  function

[tex]f(x)=(\frac{1}{4})^{x-b}[/tex]