Answer:
A. Solution to [tex]y \ge x^2 - 4[/tex] but not to [tex]y < 2x - 1[/tex]
Step-by-step explanation:
Given
[tex]y \ge x^2 - 4[/tex]
[tex]y < 2x - 1[/tex]
Required
Is [tex](0,0)[/tex] a solution?
[tex](0,0)[/tex] implies that:
[tex]x = 0\ and\ y = 0[/tex]
To check if it is a solution or not, we simply substitute 0 for x and for y in the given inequalities
[tex]y \ge x^2 - 4[/tex] becomes
[tex]0 \ge 0^2 - 4[/tex]
[tex]0 \ge 0- 4[/tex]
[tex]0 \ge - 4[/tex]
This solution is true
[tex]y < 2x - 1[/tex] becomes
[tex]0 < 2 * 0 - 1[/tex]
[tex]0 < 0 - 1[/tex]
[tex]0 < - 1[/tex]
This solution is not true because 0 is greater than 1.
Hence, option (A) is correct