Respuesta :

Given:

The figure.

To find:

The value of x.

Solution:

In triangle HIJ, HJ is diameter of the circle.

[tex]\angle HIJ=90^\circ[/tex]       [Thales's Theorem]

[tex]HI=IJ[/tex]                      [Given]

[tex]\angle IHJ=\angle IJH=x-42^\circ[/tex]             [Base angles of isosceles triangles are equal]

Now,

[tex]\angle HIJ+\angle IJH+\angle IHJ=180^\circ[/tex]        [Angle sum property]

[tex](90^\circ)+(x-42^\circ)+(x-42^\circ)=180^\circ[/tex]

[tex]2x+6^\circ=180^\circ[/tex]

[tex]2x=180^\circ-6^\circ[/tex]

[tex]2x=174^\circ[/tex]

Divide both sides by 2.

[tex]x=\dfrac{174^\circ}{2}[/tex]

[tex]x=87^\circ[/tex]

Therefore, the value of x is [tex]87^\circ[/tex].