Answer:
9 times
Explanation:
Mass of a body remains constant.
Let the mass of a body be 'm'
Let the speed of the body be 'v'
Initial Kinetic Energy (K.E.) = [tex] \frac{1}{2} m {v}^{2} [/tex]
When speed is tripled , new speed = 3v
Mass of body = m (Mass is always constant)
Final Kinetic Energy (K.E.") =
[tex] \frac{1}{2} \times m \times {(3v)}^{2} [/tex]
[tex] = > \frac{1}{2} \times m \times 9v[/tex]
[tex] = > 9( \frac{1}{2} m {v}^{2} )[/tex]
But we already know that [tex]k.e. = \frac{1}{2} m {v}^{2} [/tex]
Hence
[tex] = > final \: k.e. = 9(initial \: k.e.)[/tex]