Respuesta :

Answer:

[tex] x=27\degree[/tex]

Step-by-step explanation:

[tex] \because AC || DE.... (given) [/tex]

[tex] \therefore m\angle CAD= m\angle EDF\\ (corresponding \: \angle s) [/tex]

[tex] \therefore m\angle BAD= m\angle EDF\\(\because B\in \overleftrightarrow{AC}) [/tex]

[tex] \therefore m\angle BAD= 2x\\(\because m\angle EDF=2x) [/tex]

[tex] In\:\triangle BAD, [/tex]

[tex] m\angle BAD+m\angle BDA+m\angle ABD= 180\degree [/tex]

[tex] 2x+2x+72\degree = 180\degree [/tex]

[tex] 4x= 180\degree -72\degree [/tex]

[tex] 4x= 108\degree [/tex]

[tex] x= \frac {108\degree}{4}[/tex]

[tex] x=27\degree[/tex]