Respuesta :

Answer:

[tex]^8C_0=1[/tex]

Step-by-step explanation:

In this problem, we need to find the value of [tex]^8C_0[/tex].

The formula for the combination is given by :

[tex]C(n,r)=\dfrac{n!}{r!(n-r)!}[/tex]

We have,

n = 8 and r = 0

[tex]C(8,0)=\dfrac{8!}{0!(8-0)!}\\\\=\dfrac{8!}{8!}\ (\because\ 0!=1)\\\\=1[/tex]

So, the value of [tex]^8C_0[/tex] is 1.