Answer:
[tex]P(B) = 0.55[/tex]
Step-by-step explanation:
Given
[tex]P(A\ or\ B) = 0.8[/tex]
[tex]P(A) = 0.4[/tex]
[tex]P(A\ and\ B) = 0.15[/tex]
Required
Find P(B)
In probability, we have:
[tex]P(A\ or\ B) = P(A) + P(B) - P(A\ sd B)[/tex]
Substitute values
[tex]0.8 = 0.4 + P(B) - 0.15[/tex]
Collect Like Terms
[tex]P(B) = 0.8 - 0.4 + 0.15[/tex]
[tex]P(B) = 0.55[/tex]