Answer:
[tex]A.5^{\frac{5}{6}}[/tex]
Step-by-step explanation:
[tex]We\ are\ given:\\(\sqrt{5})(\sqrt[3]{5})\\To\ simplify\ the\ given\ expression\ we\ may\ use\ the\ following\ two\\ 'Laws\ Of\ Exponents'.\\1.\sqrt[n]{a}=a^{\frac{1}{n}}\\2.m^a*m^b=m^{(a+b)}\\With\ these\ two\ equations\ we\ can\ proceed\ with\ our\ problem:\\Hence\ following\ Law\ 1,\\\sqrt{5}=5^{\frac{1}{2}} \\\sqrt[3]{5}=5^{\frac{1}{3}}\\Hence,\\\sqrt{5}*\sqrt[3]{5}=5^{\frac{1}{2}}* 5^{\frac{1}{3}}\\Hence,\\5^{\frac{1}{2}}* 5^{\frac{1}{3}}\\Now,\ by\ using\ Law\ 2,\\[/tex]
[tex]5^{(\frac{1}{2}+\frac{1}{3})}\\=5^{(\frac{3+2}{6})}\\=5^{\frac{5}{6}}\\[/tex]