Respuesta :

Answer:

True

Step-by-step explanation:

Given

In JKL, we have:

[tex]\angle J = 27[/tex]

[tex]\angle K = 90[/tex]

In WXY, we have:

[tex]\angle Y = 63[/tex]

[tex]\angle X = 90[/tex]

Required

Is JKL ~ WXY?

In both triangles, we already have one similar angle (90)

Next, is to determine the third angles in both triangles.

In JKL

[tex]\angle J + \angle K + \angle L = 180[/tex]

We have that:

[tex]\angle J = 27[/tex] and [tex]\angle K = 90[/tex]

The expression becomes:

[tex]27 + 90 + \angle L = 180[/tex]

[tex]117 + \angle L = 180[/tex]

[tex]\angle L = 180-117[/tex]

[tex]\angle L = 63[/tex]

In WXY

[tex]\angle W + \angle X + \angle Y = 180[/tex]

We have that:

[tex]\angle Y = 63[/tex] and [tex]\angle X = 90[/tex]

The expression becomes:

[tex]\angle W + 63 + 90 = 180[/tex]

[tex]\angle W + 153 = 180[/tex]

[tex]\angle W = 180-153[/tex]

[tex]\angle W = 27[/tex]

The three angles in JKL are:

[tex]\angle J = 27[/tex]    [tex]\angle K = 90[/tex]   [tex]\angle L = 63[/tex]

The three angles in WXY are:

[tex]\angle W = 27[/tex]   [tex]\angle X = 90[/tex]   [tex]\angle Y = 63[/tex]

By comparing the angles, we can conclude that  both triangles are similar because of AAA postulate (Angle-Angle-Angle)