Respuesta :

Answer:

3sin(6x)

Step-by-step explanation:

f'(x)=3sin(6x)

Answer:

f'(x) = 18x sin²(3x²)cos(3x²)

Step-by-step explanation:

Differentiate using the chain rule

Given

h(x) = f(g(x)) , then

h'(x) = f'(g(x)) × g'(x) ← Chain rule

Here

f(x) = sin³(3x²)

f'(x) = 3sin²(3x²)cos(3x²)

g(x) = 3x²

g'(x) = 6x

Thus

F'(x) = 3sin²(3x²)cos(3x²) × 6x

       = 18x sin²(3x²)cos(3x²)

f