Respuesta :

Answer:

[tex]\frac{cosA-(1+sin2A)^{\frac{1}{2} } }{sinA-(1+sin2A)^{\frac{1}{2} } } =tanA[/tex]

Step-by-step explanation:

Step(I):-

Given

    [tex]\frac{cosA-(1+sin2A)^{\frac{1}{2} } }{sinA-(1+sin2A)^{\frac{1}{2} } }[/tex]    

By using  sin²x+cos²x =1

now

  =  [tex]\frac{cosA-(1+sin2A)^{\frac{1}{2} } }{sinA-(1+sin2A)^{\frac{1}{2} } }[/tex]

=    [tex]\frac{cosA-(sin^{2} +cos^{2}x +2sinAcosA)^{\frac{1}{2} } }{sinA-(sin^{2}x+cos^{2} x +s2sinAcosA){\frac{1}{2} } }[/tex]  

= [tex]\frac{cosA-(sinx +cosx)^{2} )^{\frac{1}{2} } }{sinA-(sinx+cos x)^2){\frac{1}{2} } }[/tex]

After simplification , we get

= [tex]\frac{cosA-(sinA+cosA)}{sinA-(sinA+cosA)}[/tex]

= [tex]\frac{-sinA}{-cosA}[/tex]

= tanA